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D E T E R M I N A T I O N  O F  T H E  S T A B I L I T Y  A N D  F R A G M E N T A T I O N  

L E N G T H  O F  A M E L T  J E T  I N  W A T E R  

O. I. Melikhov UDC 532.5.522 

The fragmentation of a high-temperature melt jet in water is one of the principal mechanisms underlying the formation 

of  a coarsely dispersed w a t e r - s t e a m - m e l t  mixture in the onset and development of a hypothetical severe nuclear power plant 

accident with core meltdown. Under certain conditions the melt can mix explosively with the water in such a mixture with 

potentially detrimental results for the reactor housing [1, 2]. The rate of fragmentation of  a melt jet largely governs the 

characteristics of the resulting mixture and its capacity to detonate. 

Theofanous and Saito [3] have generated images of the fragmentation process of a melt jet in water and have shown 

that losses of hydrodynamic stability of the jet flow is a possible fragmentation mechanism. The authors also note that the low 

density of the steam film formed near the surface of  the high-temperature jet can limit the fragmentation rate. The stability of 

a melt jet in water has been analyzed [4] in a planar setting and in the ideal fluid approximation. It is concluded in [4] that the 

mixing of an appreciable fraction of the melt with water is hindered by the shielding action of  the thick film of  steam separating 

the melt and the water. 

In the present article we generalize the work of  [4] to a cylindrical geometry, departing from [4] in that we obtain a 

more realistic estimate of the thickness of the steam film. We compare the analytical results with experimental data on the 

fragmentation of a molten aluminum jet in water. 

1. We interpret the basic unperturbed state as the flow of a cylindrical melt jet with constant velocity U 1 directed along 

the z axis (see Fig. 1). A cylindrical steam film having an inside radius a and an outside radius b separates the jet from an 

unbounded water reservoir. The steam and water move with constant velocities U 2 and U 3 parallel to U 1 . The densities of 

the melt, the steam, and the water are Pl ,  02, and 03. The subscripts 1, 2, and 3 are used everywhere to designate the melt, 
steam, and water, respectively. We regard all the media as ideal fluids. 

We assume that small, harmonic, axisymmetric disturbances accumulate at the mel t -s team (r12) and s team-water  

(r23) interfaces: 

r12 = a + r/oexp(/kz - twt ) ,  r23 = b + ~ o e x p ( l k z  - twO.  

Here 71 o and ~0 are unknown constants, k and oJ are the wave number and angular frequency of the superimposed disturbances, 

z is the axial coordinate, and t is the time. We express the resulting small velocity perturbations in terms of the velocity 

potential: 

u = O~lOz ,  v = o~p/dr 

(~o is the velocity potential, u and v are the perturbations of the axial and radial velocity components, and r is the radial 
coordinate). The velocity potential obeys the Laplace equation 

o27,i I o,t,j 
Or 2 + r  or + Oz 2 = 0 ( ] =  1 ,2 ,3 ) .  (1.1) 

We seek a solution of Eq. (1.1) in the form 

~o~= ~(r)exp(e,z-  ~o0 (Y = 1, 2, 3). (I .2) 
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Fig. 1 

Substituting Eq. (1.2) into (1.1), we obtain 

]; '  + f ] / r  - k2~ = 0 (]= I, 2, 3). 

The final solutions of Eq. (1.3) for the zones occupied by the melt, the steam, and the water have the form 

where I 0 and K 0 

constants. 

(1.3) 

f ,  = A, Io(kr) ,  f3 = A3Ko(kr),  

f~ = a / o ( k 0  + 8,K0(k0, 

are zero-th-order Bessel fimctions of an imaginary argument, and A 1 , A 2 , A 3 , and B 2 are unknown 

For  the perturbed flow the pressure is determined from the linearized L a g ra nge -Ca uc hy  integral 

= - p ~  - p . V - - ~ + ~ .  (y = 1 2, 3) 
8t ; ~ 8z ~ 

(pj0 is the pressure in the case of  the unperturbed flow). 

2. The following dynamical and kinematic conditions must be satisfied at the interfaces of the media. 

The pressure difference must be equalized by surface tension at the inner and outer surfaces of the steam film: 

r = a :  Pz P2 + ~ a ~ + a  ; 

~=b:e=e~+ ~'' ~=[~ eo~] 
b b z + az 2 J 

(el2 and a23 are the coefficients of surface tension of the melt and the water relative to the steam). 

Conditions (2.1) and (2.2) need to be augmented with the four kinematic conditions 

(2.1) 

(2.2) 

r = a: t~ = -~- + U~ -~- (y= l ,  2); (2.3) 
8t Oz 

r = b :  v k = 0/5 + Uk 0_.~r ( k  = 2 ,  3 ) .  ( 2 . 4 )  
at ~z 

Substituting the solutions into conditions (2.1)-(2.4), we obtain a linear homogeneous system in the constants A 1 , A 2 , 

A3, B2, ~70, and Go: 

- ~ o  l ( c o - k U 1 ) l o ( a ) A  l + ~o2(~ - kU2)Ko(a)B z 

+ ~o2(w - kU2) lo (a )a  2 + cru(k2 - a-2)qo = O, 

- -  tp2(w - kU2)lo(b)A 2 + I#2(w - kU2)KoCb)B 2 

+ /P3Cw-- k U 3 ) K o ( b ) A 3 + G 2 2 ( k  2 - b-2)~0 = 0, 

kI'o(a)A x + t(co - kUt)tlo = O, 

kXoCa)a 2 + kx'o(a) % + t(o, - kv , ) , l o  = O, 

/a'o(b)a ~ + k K ' # ) %  + l ( a , - k V ~ ) , o  = O, 

t K o ( b ) A  3 + l(o, - t U 3 ) ,  o = O. 
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TABLE 1 

tJ L I ~  

I 
1,001 
1,006 
1,01 
1,1 
2 
4 

xm tT,,l 

36,47 154,48 
3,10 5,557 
1,48 1,703 
1,38 1,217 
0,82 0,4278 
0,706 0,3507 
0,704 0,3475 
0,704 0,3473 

3,03 
7,16 
11,16 
14,57 
24,62 
2.5,86 
26,03 
26,04 

TABLE 2 

Experiment 
No. 

9 
10 

a ,  e m  

0,5 
1 

I 
e v m/see ] we 

2,5 ] 82,5 
2,5 165 

T 1, K 

973 
973 

L/~,. L/:,, (cal.) 
(expe~unent) 7,5 t 

10 7,41 

The Bessel functions are differentiated with respect to the complete argument; from now on we drop the wave number k from 

the arguments of  the Bessel functions for brevity. 

The given system has a nontrivial solution only when the determinant is equal to zero. This condition yields the 
dispersion relation 

[ I o l ( a ) p t ( c o  - k V l )  2 - a z 2 k ( ~  - a  -2) l {K01(b) / H i ( a )  

+ no(b) lp2(~o  - kV2) 2 + IKol(b)p~(r - kU3) 2 

- ozsk(k  2 - b-2) l [Ht(b) - H I ( a ) l }  + Kol(a)P2(~ (2.5) 

- kU2)2lKo~(b) trio(b) - Ho(a ) l P2(O~ -kU2) 2 

+ [Kot(b)p3(o~ - kV3) 2 - a~k(/? - b-2)] IH0(a) + H~(b)1} -- 0, 

where Iol (x) = I 0 (x)/I 1 (x), KOl (x) = K 0 (x)/K 1 (x), H 0 (x) = I 0 (x)/K 0 (x), H 1 (x) = I 1 (x)/K 1 (x), and I 1 (x) and K 1 (x) are first- 
order Bessel functions of an imaginary argument. 

Similar dispersion relations have been obtained in earlier papers [5, 6], which are close in context. 

3. Inasmuch as the dispersion relation (2.5) is very cumbersome in its general form, we begin with several limiting 
cases involving major simplifications of the relation. 

Transition to the Planar Problem. Let the radius of the jet become infinite (ka --, oo, kb --, 00). The Bessel functions 
then admit the asymptotic representations 

x "~ o,: lo(X ) ~ l l ( x )  _~ e x p ( x ) / ~ " x ' ;  (3.1) 

x - ,  ,o: Ko(x  ) = K l ( x  ) ~ exp(_x)/vt-~'-X-X. (3.2) 

In light of expressions (3.1) and (3.2), Eq. (2.5) acquires the form 

th (k3)P2(oo-kU2)2[P3(eo-kU3)  2 - a23k 31 Lo1(~ - k V l )  2 - u , l d  1 

+ p 2 ( o ~ - k U , ) '  th(k3) + p2(w -kU2)2 [P3(o~ - k U ~  2 - a J d l  

= 0 (cS = t, - a ) .  
(3.3) 

Equation (3.3) coincides with the dispersion relation obtained in [4] for the planar case. 

Media 2 and 3 Have Identical Properties. Let media 2 and 3 be indistinguishable (P2 = P3, a23 = 0, U 2 = U 3). 

We can obviously set U 2 = U 3 = 0 without loss of generality. Omitting the intermediate calculations, we give the final form 
of the dispersion relation (2.5): 
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(P jtlox( a)  + p zKol( a) )ta :~ - 2 k U  1 p aloa( a )w 

+ Pl~U~Ioa(a)  - % k ( ~  - a -2) --- 0. 
(3.4) 

Equation (3.4) coincides with the dispersion relation for the Rayleigh jet fragmentation problem. 

Thin Steam Film Limit .  Let b --, a. We assume without loss of generality that U 3 = 0. Equation (2.5) then has the 
form 

lot(a)pl(o~ - kl]1)2 + Kolp3~2 -- a, ,k(Id - a -2) = O. (3 .5 )  

Equation (3.5) is the dispersion relation of the stability problem for a jet of density Pl flOWing with velocity U 1 in a fluid of 

density P3- The surface tension at the interface is og = o12 + 023. 
Thick Steam Film Limit .  We consider the situation a <<  b. Disregarding the small Bessel function groups in Eq. 

(2.5), we obtain 

[lox(a)Pt(~ - kUx)2 + Kol(a)P2(r176 - kU2)2 - aa2k(~  (3.6) 

- a - b l  t l o , ( b ~ ( ~ ,  - kV~) ~ + Ko1(t,)p~(o, - t V ~ )  ~ - %k(~ - t , - b ]  = o .  

Here the stability problem for the given system is reduced to two independent problems. The dynamics of  the melt jet in a 
vapor medium are investigated in the frrst (interior) problem, in which case the first bracketed expression in (3.6) is equal to 
zero: The second (exterior) problem is concerned with the stability of  the steam jet in the surrounding water [the second 

bracketed expression in (3.6) is equal to zero]. 

Low-Density Steam. I f  P2 < <  Pt and P2 < <  03, terms with P2 can be ignored in Eq. (2.5). It is then simplified 
and assumes the form 

[ I o 2 ( a ) p l ( w  - k U t ) 2  - o , , k ( ~  - a-2) l 
• I X o l ( b ) P , ( ' o -  kU3)" - ~ , , k ( t ;  - t ,-2) ] = 0 ,  

(3.7) 

reducing the problem to the successive stability analysis of a melt jet in vacuum and of a "vacuum jet" in water. 

4. Disturbances occurring randomly at the initial time grow in an unstable flow regime. The most interesting species 

are rapidly growing disturbances, where it is important to know both their growth rate and their characteristic space scale. We 
use the above-derived dispersion relations to investigate this problem. 

To begin with, following Epstein and Fauske [4], we estimate the thickness of the steam film surrounding the jet. We 

assume that steam is generated mainly in a zone situated in front of the leading edge of the water-immersed jet. The heat flux 
from the front end of the jet is spent in evaporating the water ahead of it: 

~a~q _- mh~. (4.1) 

Here q is the heat flux from unit surface of the jet, m is the mass rate of steam generation, kg/sec, and h32 is the latent heat 
of  vaporization of  water. 

The main contribution to the heat flux is from radiation: 

q = k a y ,  (4.2) 

where k r is the radiating capacity of the melt, o r is the Stefan-Boltzmann constant, and T 1 is the temperature of the melt. 

The generated steam moves with velocity U relative to the jet. We write the mass balance equation for the steam: 

m = ~ [ ( a  + 6) 2 - a2]p2U ( U  = U 1 - U2). (4.3) 
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On the basis of (4. I) and (4.2) Eq. (4.3) assumes the form 

h~ [ (a  + 6) ~ - a~lt,2u = k,,r,~a ~. (4.4) 

The relative steam velocity U is determined from the condition that buoyancy, pushing the steam upward, is equal to 

the force created by friction of  the steam against the melt jet and the water. We write this condition for the part of the steam 

film of height Az as 

(,~ - -P2)gAz~I (  a + 6) 2 -- a21 = F ,  + F32. (4.5) 

Here g is the free-fall acceleration, and F12 and F32 are the friction forces, which are functions of the steam velocity relative 
to the melt and the water: 

F,2(t/~ - v 2 )  2 
Fu = 2~aAzcu  2 ' 

P21U21U2 (4.6) 
F32 = 2~(a + 6 ) A z %  2 

In Eq. (4.6) it is assumed that U 3 = 0, i.e., the melt jet issues into water at rest. The friction coefficients c12 and C32 are 
functions of  the corresponding Reynolds numbers: 

{ 0,057Re~ as, Re ~> 400, 
cu = 4Re~ l, Re < 400, 

~ e , ,  = p2lu~  - u216/~,~ 

(/,t 2 is the viscosity of the steam), which is analogous to the equation used for C32. 

Substituting the expressions for FI2 and F32 into (4.5), we obtain 

(P3 - P2)gl(a + 6) 2 - a2l = cuP2 U2a + %p2IU~ - UI(Ux - tO (a + 6). (4.7) 

The system of nonlinear equations (4.5) and (4.7) determines ~ and U when the jet velocity U 1 is known. 
This system is solved numerically by an iterative method. In the ensuing analysis, therefore, we specialize the situation. 

We use recently published results of  experimental studies at the Argonne National Laboratory (USA) on the fragmentation of 

a molten aluminum jet in water [7]. In experiment No. 11 an aluminum jet with a temperature T I = 973 K was directed at 

a velocity U 1 = 5 m/sec into still water at atmospheric pressure. The radius of  the jet was a = 10 ram, the density of the 

aluminum was Pl = 2700 kg/m 3 , and the coefficient of surface tension was o12 = 1 N/m. We assume the following 

thermodynamic parameters for water: P2 = 0.59 kg/m 3 ; P3 = 998 kg/m 3 ; h32 = 2.257 MJ/kg. Solving Eqs. (4.5) and (4.7) 

numerically, we have U 2 = 1.8 m/sec and ~i = 0.6.10 -4  m. 

5. For tliese parameters we determine the size of the fastest-growing disturbances and the rate of their growth and then 

use this information to estimate the jet fragmentation length. 
The dispersion relation (2.5) has four pairwise-conjugate complex roots. For a <<  b (thick film approximation) Eq. 

(2.5) splits into two quadratic equations associated with the interior and exterior problems. Each of these equations has two 

complex roots. A numerical analysis has shown that all the roots can be classified into two groups for a steam film of any finite 

thickness: two roots and their corresponding particular solutions describe the evolution of  the mel t -s team interface, and the 

other two roots characterize the behavior of the s team-water  interface. The roots of Eq. (2.5) are found by iterations using 

the interior and exterior solutions of the thick-film problem as initial approximations. 

We transform to dimensionless variables, adopting the jet radius a and the capillary wave period t x = (Pl a3/trl2) 1/2 

as characteristic scales. We denote by x m the dimensionless wave number of the fastest-growing disturbance (x m = k m a, where 

k m is the corresponding dimensioned wave number). Let t m be a dimensionless time constant characterizing the growth of the 
fastest-growing disturbances: 
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t = IIImaJ I t l  -~ 

(o~ m is the complex frequency of  these disturbances). 

For the specific situation discussed above, where the film thickness corresponds to the dimensionless parameter B = 

b/a = 1.006, the numerical solution of  the dispersion relation (2.5) gives tm -1 = 1.703 and x m = 1.48. 

These data can be used to estimate the jet fragmentation length. According to [8], the jet fragmentation time is of the 

order of magnitude 

t b = k a t t ,  

and the length over which the jet disintegrates is 

The corresponding dimensionless quantity has the form 

L 1 
- WVWe'xt (We = plU21a/au) (5.1) 

2a 2 

(We is the Weber number). 

Substituting the values of  x m and t m obtained from the dispersion relation into Eq. (5.1), we obtain L/2a = 11.16, 

which is in good agreement with the experimental value L/2a = 14. It is interesting to note that the application of the 

asymptotic dispersion relation (3.5) for a thin steam film gives L/2a = 3.03. Consequently, despite the small thickness of  the 

steam film, its inclusion is of  fundamental importance. The film, in effect, shields the melt jet from disturbances arriving from 

the water. 

To ascertain the influence of the thickness of the steam film on the stability of the melt in water, we have carried out 

a series of computations with different values of/3; the results are given in Table 1, from which it follows that the presence 

of even a thin steam film significantly stabilizes the melt jet, and the water ceases to influence the jet dynamics altogether at 

a mere 10% film thickness, when the thick-film approximation can be used. In this regard, the above-discussed case of 

maximally rarefied steam (3.7), when the jet is actually in contact with vacuum, yields a dimensionless fragmentation length 

of the jet L/2a = 26.10. 

The thickness of the film in the cited experiment lies in the transition range, where the dependence of the jet 

fragmentation length on the film thickness is significant. Consequently, it is important here to have a reliable estimate of the 

film thickness. The estimate obtained in the present study yields good agreement with experiment. The estimate given in [4], 

on the other hand, makes the film thickness too large and, as a result, produces an appreciable discrepancy with experiment. 

Gabor et al. [7] have reported two more experiments to determine the fragmentation length of  a molten aluminum jet 

in water (experiments No. 9 and No. 10). The results of the calculations for these experiments are given in Table 2. 
A comparison of  our investigation with a study [4] of the analogous problem in a planar setting has shown that the 

analysis of  stability on the basis of the planar formulation for the above-indicated jet parameters leads to patently erroneous 

results for a < 5 cm. The planar formulation becomes valid for a jet of radius a > 50 cm. 

Consequently, a comparison with the experimental results leads to the conclusion that the proposed model of the 

fragmentation of a melt jet in water, based on an analysis of its hydrodynamic stability, adequately describes the process and 

can be used to estimate the parameters of  a mel t -water  mixture in studying the consequences of  nuclear power plant accidents 

with core meltdown. 

The author is grateful to the Russian Fundamental Research Fund for financing this work under Project 93-02-15995. 
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